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Abstract—The NASA Analogy Software Costing Tool Suite 

(ASCoT) consists of a cluster-based analogy estimator for 

estimating software development effort, a K-Nearest Neighbors 

(KNN) analogy estimator for estimating effort and delivered 

lines of code, a simple regression-based cost estimating 

relationship (CER) model that estimates cost in dollars, and a 

probabilistic version of COCOMO II. In this paper we 

document the analogy algorithms as well as summarize the 

results of the performance of the KNN and the principle 

components (PCA) cluster analogy models.  KNN performance 

is assessed by varying the number of inputs and number of 

neighbors.  Four different clustering methods: K-means, 

Spectral Clustering, Hierarchical Clustering, and Principle 

Components Analysis (PCA), and their respective evaluation 

criterion are described in detail. The comparative performance 

of all four estimation models is assessed using magnitude of 

relative error (MRE) measurements. 

 

TABLE OF CONTENTS 

1. INTRODUCTION ....................................................... 1 
2. DATA SUMMARY ..................................................... 2 
3. ARCHITECTURE AND METHODOLOGY .................. 5 
4. ASCOT ESTIMATION TOOLS ................................. 5 

A. Cost Estimating Relationship ...................... 5 
B. Analogy Estimation Using KNN ................. 6 
C. Cluster Analysis ......................................... 10 

5.  CONCLUSIONS AND NEXT STEPS ........................ 19 
REFERENCES............................................................. 19 
BIOGRAPHY .............................................................. 19 
APPENDIX A: ACRONYMS AND ABBREVIATIONS ... 21 
APPENDIX B: SYSTEM PARAMETERS WITH 

DEFINITIONS AND EXAMPLES .................................. 22 
APPENDIX C: MISSION DATA INCLUSION LIST ...... 24 

1. INTRODUCTION 

Software cost estimates are often required in the early stages 

of mission design when the technical details are not fully 

 
1 For full list of acronyms used in this paper, see Appendix A. 
2 Pred(30) is an example of a MRE metric that was a popular measure of 

understood and software experts are not around. To help 

address this problem, a decade-long research journey was 

undertaken to better understand alternative estimation 

methods and to determine if a model could be developed with 

minimal, flexible, inputs while avoiding the occurrence of 

large estimation errors, even when systems engineers and 

non-experts are attempting to estimate flight software costs.  

The use of analogy has been well documented in the literature 

on software cost estimation [1,2,3]. Software developers 

typically perform analogy estimates based purely on memory 

with no supporting data, which results in non-reproducible 

estimates with difficult to determine accuracy. Thus, 

academics have proposed various formalizations of analogy 

to improve estimation replicability and accuracy [2,3, 8]. The 

simplest of these formulations use distance as a means of 

assessing similarity between projects, frequently using data 

mining algorithms such as K-Nearest Neighbors or 

clustering. An advantage of these methods is their ability to 

handle categorical data in addition to quantitative data. 

The NASA Analogy Software Cost Tool (ASCoT)1, was first 

introduced at the 2016 IEEE Aerospace conference [4] and as 

a web-based tool [5] in 2017. ASCoT is designed to address 

the specific problems associated with generating more 

realistic estimates in the earliest parts of the lifecycle (CML 

1).  The NASA Analogy Software Cost Model is built on 

research into the effectiveness of data mining algorithms to 

develop repeatable, well-documented analogical software 

estimation models [6,7,8,9].  The purpose of ASCoT is to 

enable the ability to estimate software development effort and 

cost early in the project lifecycle using easily attainable 

inputs, such as the type of mission and the number of 

instruments. ASCoT is developed as a compliment or 

extension to the existing widely applied parametric methods.  

The other contribution of this paper is the emphasis on the 

use of the magnitude of relative error (MRE) as a metric for 

evaluating cost model performance for cluster analysis, and 

for comparing parametric vs non-parametric models2.  

model performance in the eighties and nineties, but seems to have since 

fallen out of favor. 
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The following is a summary of the key findings from our 

previous work [4,5,6,7,8,9]: 

• There are a variety of models whose performances are 

hard to distinguish (given currently available data), but 

some models are clearly better than others. 

• Based on an extensive analysis of various estimation 

models, it was found that COCOMO II performed as 

well or better than every other estimation method 

evaluated, which included various data mining 

algorithms [10,11,12]. In other words, if one has 

sufficient detailed knowledge to run COCOMO or a 

comparable parametric model, then the best model is the 

parametric model. 

• When insufficient information exists then a model using 

system parameters can be used to estimate software costs 

with only a small reduction in accuracy.  The main 

weakness is the possibility of occasional large estimation 

errors, which the parametric model does not exhibit. 

• While a nearest neighbor model performs as well as 

clustering based on MMRE, clustering handles outliers 

better and provides a structured model with more 

capability.  

ASCoT the tool suite consists of four estimation 

models/tools: an Analogy effort estimator based on 

Clustering, an Analogy effort and size estimators based on 

KNN, a linear regression CER (Cost Estimating 

Relationship), and a probabilistic version of COCOMO II.  

However, ASCoT is only available via the NASA ONCE 

server which is only assessable to those with a NASA Badge.  

Therefore, the focus of this paper is primarily on 

documenting the algorithms and validation results for the 

PCA cluster analysis and the KNN estimation models which 

can be applied by others.   

2. DATA SUMMARY 

Data Sources  
 

The primary data source is the NASA Cost Analysis Data 

Requirement (CADRe).  The CADRe is a formal project 

document that describes the life-cycle cost, schedule, 

technical, and risk information of a project.  The CADRe has 

three separate Parts: A, B, and C. Part A is a narrative 

description of the project throughout its lifecycle at each 

milestone and includes essential subsystem descriptions, 

bock diagrams, and heritage assumptions. Part B contains the 

technical design parameters such as power, mass, and 

software metrics for each subsystem in a standardized 

template. Part C captures all the cost data broken out by Level 

2 of the Work Breakdown Structure (WBS) throughout the 

lifecycle by project phase. Questionable CADRe data was 

revised with information/data from other sources and 

additional data added as follows: 

• Available missing data items were obtained from other 

sources including contacting project software 

managers 

• System descriptor data was supplemented with data 

from NASA project websites, project reports, and 

Wikipedia articles. 

• Software metrics for older missions that predated the 

CADRe were supplemented with data records from a 

data collection conducted for the International Space 

Station that was completed in 1990.  A subset of these 

records can be found at the PROMISE (Predictor 

Models in Software Engineering) website under the 

COCOMO directory.   

• Contributed NASA Center level data 

 

Data Description 

 

A list of relevant variables used in the tool can be found in 

Table 1. Each variable is accompanied by the number of 

missions with complete data for that field. 

Table 1 Data summary with number of 

records – 34 missions have complete verified 

data and are used in ASCoT Clusters 
 

Data Item 

  

Number 

of Data 

Records 

as of 2018 

Total development effort in work 

months 39 

Flight Software Development Cost 43 

Flight System Development Cost 43 

Source Lines of Code 

(SLOC)   

Delivered SLOC 51 

Inherited SLOC (Reused plus 

Modified reused) 43 

COCOMO Model inputs (See 

Appendix A for the parameter 

definitions) - Translated from 

CADRe 19 

Systems Parameters   

Mission Destination 

(Asteroid/Comets, Earth, Inner 

(planetary), Outer (planetary) ) 51 

Multiple element (probe, etc…) 51 

Number of Instruments 51 

Number of Deployable 51 

Flight Computer Redundancy 

(Dual Warm, Dual Cold, Single 

String) 51 

Software Reuse (Low, Medium, 

High) 49 

Software Size (Small, Medium, 

Large, Very Large) 51 
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The data used in the ASCoT estimation tools was last updated 

in March, 2018. Note that the number of records reported in 

the data summaries in Table 1 through Table 14 vary due to 

missing data.  

 

There are a total of 61 missions in the dataset, with 51 that 

could be used in at least one model. While the models share 

many of the same missions, the data used is different as 

ASCoT contains different models that estimate effort, 

dollars, and lines of code.  

 

As few new missions launch each year, the number of records 

has only increased by nine since the ASCoT prototype was 

developed in 2015. Since then, the focus has been on 

improving data quality, improving model performance and 

adding new estimation models. For a detailed description of 

the types of data parameters collected see Appendix B and 

for the COCOMO model see [13].  Appendix C contains a 

list of all missions for which data was obtained with an 

indication of which missions were used to build the analogy, 

KNN and regression models. 

 

Table 2 through Table 7 below summarize the data by 

median, average, and spread metrics for each parameter.  

There has been little change in the summary metrics as a 

result of the addition of the new and corrected data.  Overall, 

inner/outer planetary missions have more lines of code, 

higher development effort, cost more, have more instruments, 

and are more likely to be dual string than Earth Orbiters.  Not 

surprisingly, inner/outer planetary missions have 

significantly more deployables and instruments than all other 

mission types.  Slightly surprising is that Earth Orbiters and 

inner/outer planetary missions have similar inheritance rates 

even though many Earth orbiters can draw more easily on the 

various contractor product lines. 

  Table 2 Effort by Mission Type 

Mission 

Type 

EFFORT (Months) 

# of 

Records Median Std. Dev. Avg. Range 

Asteroids

/ Comets 
7 546 373 583 48 - 1048 

Earth 14 499 466 632 100 - 1830 

Inner 

Planetary 
17 664 435 813 336 - 1888 

Outer 

Planetary 
4 620 411 723 346 - 1307 

 

Table 3 Delivered SLOC by Mission Type 

Mission 

Type 

Delivered SLOC by mission type, actual count 

# of 

Records Median Std. Dev. Average Range 

Asteroids/ 

Comets 7 143,000 35,189 118,679 24,100 – 246,654 

Earth 23 62,000 39,986 211,600 23,000 – 170,000 

Inner 

Planetary 17 122,000 133,765 105,411 62,900 – 475,000 

Outer 
Planetary 4 54,000 21,633 126,120 24,000 – 130,150 

Table 4 Software size by size category and mission type 

Mission 

Type 

Software Size Category 

# of 

Records Small Medium Large 

Very 

Large/ 

Extra 

Large Median 

Asteroids/ 

Comets 7 2 2 2 1 Medium 

Earth 23 2 16 5 0 Medium 

Inner 

Planetary 17 0 5 9 3 Large 

Outer 

Planetary 4 1 1 2 0 Large 

 

Tables 4 and 5 show software size and inheritance by mission 

type.  While the actual code counts for software size and 

inheritance (or at least estimated code percentage for 

inheritance) were known data parameters, these values were 

binned into categories for two reasons. Most notably, the tool 

is designed to be used for early lifecycle phase estimates only, 

so estimators would only require an approximate idea about 

the number of delivered and inherited SLOC.   The other 

reason is due many inconsistencies in how lines of code are 

recorded in the NASA CADRe and with a lack of 

documentation on counting rules, the use of categories is a 

more accurate reflection of the actual accuracy of the data. 

Table 5 Inheritance by Mission Type 

Mission 

Type 

Inheritance 

# of 

Records 

VL to 

None Low 

Med- 

ium High 

Very 

High Median 

Asteroids

/ Comets 7 1 1 3 0 2 

Med-

ium 

Earth 21 3 1 5 6 6 High 

Inner 

Planetary 17 4 1 3 4 5 

Med-

ium 

Outer 

Planetary 4 2 0 1 1 0 

Med-

ium 

 

Table 6 and 7 show deployables, instruments, and flight 

computer redundancy by mission type. It is shown that the 

number of deployables and number of instruments are higher 

for inner/outer planetary compared to Earth orbiters and 

asteroids/comets. In addition, Dual-String Cold and Dual 

String Warm flight computer redundancy is also higher 

compared to Earth missions.  

Table 6 Deployables and Instruments by Mission Type 

Mission Type 

# of 

Records 

Deployable Instruments 

Median Range Median Range 

Asteroids/ 

Comets 7 1 0 - 3 3 2 - 5 

Earth 23 2 0 - 8 3 1 - 10 

Inner Planetary 17 2 0 - 10 4 3 - 10 

Outer Planetary 4 3 0 - 8 10 7 - 12 
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Table 7 Flight computer redundancy by mission type 

Mission 

Type 

# of 

Records 

Flight Computer Redundancy 

Single 

String 

Dual 

String- 

Cold 

Dual 

String-

Warm Median 

Asteroids/ 

Comets 7 1 6 0 

Dual 
String 

Cold 

Earth 23 12 11 0 
Single 
String 

Inner 

Planetary 17 5 8 4 

Dual 

String 

Cold 

Outer 

Planetary 4 0 2 2 

Dual 

String 

Warm 

Tables 8 through 11 show Delivered Productivity by Logical 

Lines of Code by mission type and inheritance level; low 

(<20%), medium (<50%), high to very high (>=50%).  

Inherited code includes both reused and modified reused code 

reuse.  As expected, all mission categories clearly show that 

increases in inheritance result in higher productivity rates.  

Table 8 Productivity (Delivered Logical SLOC) by 

mission type 

Mission 

Type 

# of 

Records 

Logical Equivalent SLOC 

Median 

Std. 

Dev. Avg. Range 

Asteroids/ 
Comets 7 175 203 267 124 - 615 

Earth 14 192 208 250 46 - 823 

Inner 

Planetary 16 244 90 237 65 - 394 

Outer 

Planetary 4 178 109 174 37 - 302 

Table 9 Very low to none and low inheritance delivered 

productivity 

Mission Type 

Very Low to None and Low Inheritance      

(0% - <20%) Delivered SLOC Productivity 

# of 

Records 

Avg. 

Prod 
Median Prod Range 

Asteroids/ 

Comets 
2 89 89 24.1 - 154 

Earth 
4 112 117 62 - 150 

Inner Planetary 
5 214 149 62.9 - 475 

Outer Planetary 
2 77 77 24 - 130.15 

Table 10 Medium inheritance delivered productivity 

Mission 

Type 

# of 

Records 

Medium Inheritance (>20% - <50%) 

Delivered SLOC Productivity 

Avg. 

Prod 

Median 

Prod Range 

Asteroids/ 

Comets 2 141 141 100 - 182 

Earth 3 91 81 23 - 170 

Inner 

Planetary 1 - - - 

Outer 

Planetary 1 - -  -  

Table 11 High and very inheritance delivered 

productivity 
 

 

Mission 

Type 

# of 

Records 

High and Very High Inheritance 

(>=50%) Delivered Productivity 

Avg. Prod 
Median 

Prod 
Range 

Asteroids/ 

Comets 
2 166 166 86 - 247 

Earth 12 93 92 41 – 154 

Inner 
Planetary 

10 157 163 90 - 224 

Outer  

Planetary 
1 - -  -  

 

12 and 13 provide a summary of the flight software and flight 

system cost records in FY16 dollars ($M).  As with the effort 

data, the cost of inner/outer planetary missions are more 

expensive then earth orbiters.  The data indicates that the 

difference in cost is greater than the difference in effort 

between mission types.  This is most likely because the 

reported cost includes procurements and costs of additional 

WBS elements that are not included in the effort data.  For 

example, some contractors include simulators for the flight 

system with flight software costs as they are used for testing 

the flight software.   Another pattern not shown here, but 

present in the data, is that the median value of the ratio of 

flight software costs to flight system cost is 10% for all 

mission types except In Situ which is 5%. 

 

Table 12 Software development cost (FY16$ M) 

 

 

Mission Type 
# of 

Records 

Software Development Cost 

(FY16$M) 

Avg. Prod Median Prod Range 

Asteroids/ 

Comets 
6 12 12 1 - 24 

Earth 19 9 7 1 - 24 

Inner Planetary 16 19 17 3 - 63 

Outer Planetary* 2 26 26 12 - 40 

 

Table 13 Total spacecraft (FY16$ M) 

 

 

 

Mission Type 
# of 

Records 

Total Spacecraft Development Cost 

(FY16$M) 

Avg. Median Range 

Asteroids/ 

Comets 
6 173 166 50 - 305 

Earth 19 123 72 15 - 386 

Inner Planetary 16 287 217 41 - 1,335 

Outer Planetary 2 297 297 193 - 401 
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3. ARCHITECTURE AND METHODOLOGY 

 

 

Figure 1 ASCoT Architecture 

 

As mentioned previously, ASCoT consists of four estimation 

models/tools: a clustering model, a KNN model, a linear 

regression, and a probabilistic version of COCOMO II.  How 

these tools relate to one another is shown in the architecture 

diagram in Figure 1.  Except for COCOMO II, all of the 

models/tools in ASCoT only use high level system 

descriptors as inputs.  When ASCoT is completed, the outputs 

of these models will be used as the inputs into the more 

complex COCOMO estimation model.   

 

One of the significant contributions of the research conducted 

in developing ASCoT is the recognition of the importance of 

using the magnitude of relative error (MRE) and its 

associated measures, such as the mean or median MRE, as a 

metric for evaluating cost model performance across very 

different types of models.  MRE measures are popular in the 

data mining literature because they require no assumptions 

about the underlying distributions, enabling one to compare 

model performance across very different types of models.  

Pred(30), another MRE statistic, was very popular in the cost 

field in the eighties and nineties but seems to have fallen out 

of favor [7].  For a detailed description of the various models 

evaluated and the MRE evaluation method see [2,4,7]. In 

generating the MRE and other evaluation metrics for this 

paper, we have used leave-one-out cross validation and then 

computed the average or median for each test point as 

appropriate.  Detailed descriptions of procedure and analyses 

of model performance for each of the estimation tools is 

described in the sections below. 

4. ASCOT ESTIMATION TOOLS 

A. Cost Estimating Relationship 

The following regression models were developed with cost 

data from the CADRe Part C with minimal normalization, 

partly as a test to see to what extent the raw CADRe data 

could be successfully used to develop a basic cost model.  

Minimal normalization makes verifying the project data used 

in the model very fast and easy. The basic regression models 

performed so well that they were included as part of the 

ASCoT tool.   Again, as with the analogy model, the guiding 

principle was to keep the regression simple with inputs that 

can be “approximated” in the early stages of concept 

development through Step 1 proposals, and in early phases of 

the lifecycle. ASCoT features one univariate CER model 

which branches into three separate regressions; and one 

multivariate linear model with just two predictors. 

 

 

 

Model 1: Software Development Cost as a function of Total 

Spacecraft Development Cost 
 

Although this model is only dependent on one variable (Total 

Spacecraft Development Cost), it is actually the composition 

of three independent models segregated by mission type (All 

Missions, Inner and Outer Planetary Missions, Earth 

Missions). Each model stands independently, using only its 

subset of observations to fit a least squares simple linear 

regression. The model parameters and key test statistics for 

all three models are shown in Table 14. 

 

All three models produced significant F-test results compared 

to the intercept-only model. As a quick rule of thumb, the 

results indicate that flight software costs around $4 million at 

a minimum and then runs at 5% of spacecraft cost.  This result 

is heavily driven by the planetary missions, as when 

analyzing only Earth/ Lunar orbiter missions, the intercept is 

not significantly different from 0 and software runs at 6% of 

spacecraft cost. 

 

Table 14 Univariate model parameters and test statistics 

 Intercept 

(t)  

β  Spacecraft 

development 

cost (t) 

Model 

statistics  

All Missions 
4.42 

(3.34*) 0.05 

(10.19*)  

n = 42 

F = 103.9* 

df = (1,41) 

R2
adj = 0.71 

Planetary 

Missions 

7.24 

(2.89*) 0.04 

(6.77*)  

n = 17 

F = 45.9* 

df = (1,16) 

R2
adj = 0.73 

Earth 

Missions 1.36 

(0.90)  

0.06  

(6.29*)  

n = 18 

F = 39.5* 

df = (1,17) 

R2
adj = 0.68 

 

 

 

Model 2: Software Development Cost as a function of Total 

Spacecraft Cost and Total Number of Instruments 
 

In the multivariate case, all missions’ Software Development 

Costs were regressed on both Total Spacecraft Development 

Cost and Total Number of Instruments using least squares 

minimization. However, as shown in Table 15, the result was 

not significant compared to the univariate model according to 

the a nested F-test which returned an F-statistic of 1.2, 

indicating that the addition of number of instruments to the 

model did not explain a significant amount of additional 

variance. 
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Table 15 Multivariate model parameters and test 

statistics 

Intercept 

(t)  

β Spacecraft 

development cost 

(t) 

β Number of 

Instruments  

(t) 

Model 

statistics  

 

2.80 

(1.40) 0.04 

(7.85*)  

 

 

0.53 

(1.09) 

n = 42 

F = 103.9* 

df = (1,41) 

R2
adj = 0.71 

Fnested = 1.19 

 

Outlier Analysis 
 

Visualizations of the data for this model made obvious that 

the data included one clear outlier: Mars Science Laboratory 

(MSL). MSL is a very large Rover Mission whose Total 

Spacecraft Cost of $1,335 million and a Software 

Development Cost of $63 million make it an outlier in both 

the x and y directions. This value is extremely influential 

according to Cook’s Distance, crossing the typical threshold 

value of 1, while the rest of the points average a Cook’s 

Distance of .016. MSL also had high leverage, with a Hat 

Value of .70 which is well over the threshold of .095 (the 

typical threshold for Hat Values is 2p/n, where p is the 

number of predictors in the model). 

 

An analysis of the relative error distributions of each model 

was performed to determine whether including the MSL 

outlier was justified. For the All Missions univariate model, 

while the median relative error for the curve with MSL was 

actually slightly lower than the MRE without MSL, it was 

only by a factor of .005 (.323 vs. .328), which is insignificant. 

Also, the MRE curves shown in Figure 2 are almost on top of 

each other, crossing over each other frequently, indicating 

that the regression models with and without MSL are 

indistinguishable in terms of the prediction errors that they 

produce.   

 

 
Figure 2 MRE distributions with and without the outlier 

 

 

 

As the difference in error was negligible, the benefit of being 

able to predict MSL was worth including the outlier so that 

future predictions in the range of MSL are not drastically 

overestimated. The same results were found for the 

multivariate model and the Planetary Mission regression 

models, so MSL was included in the data. 

B. Analogy Estimation Using KNN 
 

Introduction—The ASCoT k-Nearest Neighbor regression 

model is a simple non-parametric method used to estimate 

either the total development effort or the total delivered lines 

of code using Euclidean distance as a measure of similarity.   

 

A user may input any combination of the following variables 

to make an estimate: Mission Size, Mission Type, 

Redundancy, Destination, Number of Instruments, Number 

of Deployables, and Inheritance (if estimating total 

development effort). The decision to use these organization-

specific variables comes from the authors of [3] who suggest 

that when using analogy methods on an intraorganizational 

database the specificity of the data is not as beneficial if the 

organization uses generic COCOMO-like factors. By using 

these organization-specific measurements available in the 

early phases of project formulation, we hope that the analogy 

methods used in ASCoT will not only provide accurate cost 

estimates, but also return relevant data from historical 

missions that are actually similar to the project at hand. 

 

The algorithm takes in all of the provided dimensions and 

first converts the categorical variables to integers, per Table 

22.  The training data, described in the Data Summary section 

above, as well as the test point (the point that is being 

estimated) are then normalized by subtracting the mean of 

each dimension and dividing by the range of that dimension 

in the training data. This standardization method is similar to 

methods used in [2,3]   
 

 

KNN Algorithm 
 

The K-Nearest Neighbor (KNN) algorithm is a simple non-

parametric model used to estimate a continuous dependent 

variable for a point based on the distance to neighboring 

points in the set [14].   

 

Take a finite set 𝐴 ⊂ ℝ𝑚+1, where |𝐴| = 𝑛 for some 𝑛 ∈  ℤ+ 

and each vector 𝒗𝑖 ∈ 𝐴 is of the form: 

 

𝒗𝒊  =  (𝑋𝑖,1, 𝑋𝑖,2, ⋯ , 𝑋𝑖,𝑚, 𝑌𝑖)    (1) 

 

where 𝑌𝑖 is the continuous dependent variable we are trying 

to estimate.  Given a test point 𝒑 ∈ ℝ𝑚 of the form: 

𝒑 =  (𝑋𝑝,1, 𝑋𝑝,2, ⋯ , 𝑋𝑝,𝑚)   (2) 

 

We define the distance 𝐷 from the test point 𝒑 to any training 

point 𝒗𝑖 using the following function: 

 

0

0.5

1

1.5

2

2.5

3

3.5

4
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0th 25th 50th 75th

M
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𝐷(𝒑, 𝒗𝒊) =  √∑ (𝑋𝑝,𝑗 − 𝑋𝑖,𝑗)2𝑚
𝑗=1    (3) 

 

By calculating the distance 𝐷 between the test point 𝒑 and all 

of the neighbors 𝒗𝑖 ∈ 𝐴, we may reorder the set A such that: 

 

𝐷(𝒑, 𝒗𝟏) ≤ 𝐷(𝒑, 𝒗𝟐)) ≤  ⋯  ≤ 𝐷(𝒑, 𝒗𝒏)  (4) 

 

Given some 𝑘 ∈  ℤ+ such that 0 < 𝑘 < 𝑛, we may estimate 

the dependent variable 𝑌𝑝 for our test point according to the 

following equation: 

 

𝑌𝑝  =  
∑

𝑌𝑖
𝐷(𝒑,𝒗𝒊)

𝑘
𝑖=1

∑
1

𝐷(𝒑,𝒗𝒊)
𝑘
𝑖=1

    (5) 

 

The equation above provides an average of the dependent 

variable 𝑌𝑖 belonging to the k points closest to p, weighted by 

the inverse distance to each point. Weighting by the inverse 

distance gives the points which are closest to the test point p 

the most influence over the estimate of p. 

 

 

Choosing the Number of Neighbors (k) 
 

Leave-one-out cross validation (LOOCV) was utilized in 

order to choose an appropriate k value for which the 

prediction errors — both the magnitude of relative error 

(MRE) and the squared error (SE) — were minimized. 

LOOCV for selecting k according to this criterion operates 

according to the following algorithm: 
1. Set k 

2. Remove one observation, the “test mission”, from the data 

3. Build KNN model on the remaining observations or 

“training missions” 

4. Predict value for the test mission using weighted average 

of k neighbors 

5. Compute relative error and squared error for the test 

mission 

6. Repeat Steps 2-5 for all n missions 

7. Compute MRE and MSE summary statistics given n 

errors in Step 5 and 6 

8. Repeat 1-7 for each new k and choose the k that minimizes 

the most parameters in Step 7 

This form of cross validation is preferred over k-fold cross 

validation for the data at hand because it maximizes the 

number of observations available to train the KNN algorithm. 

That said, LOOCV still prevents the test mission from 

influencing its own cost estimation, which means that these 

error rates are very similar to the error rates that users should 

expect when predicting mission costs for new missions that 

are not in the dataset. Table 16 and Table 17 summarize the 

MRE and MSE distributions obtained from LOOCV for k = 

1, 2, …, 7 and for predicting using the mean. 

 

Generally, as k is incremented, each of the MRE summary 

statistics decreases gradually, hits a minimum, then increases. 

Since the goal is to maximize the number of missions with 

small MREs, we want the distribution of the MREs to be as 

close to zero as possible. The same is true of the squared error 

statistics, MdSE and MSE. 

 

Table 16 KNN Effort k value LOOCV error rates 

k 

MRE SE 

25th 50th Mean 75th Max Median Mean 

1 0.18 0.47 0.60 0.60 3.93 67600 128415 

2 0.18 0.38 0.54 0.54 4.22 64803 100932 

3 0.15 0.37 0.51 0.51 4.50 39814 92299 

4 0.13 0.31 0.47 0.47 3.67 37351 88276 

5 0.19 0.31 0.51 0.51 3.53 36727 102908 

6 0.16 0.31 0.52 0.52 3.84 36601 103112 

7 0.15 0.28 0.52 0.52 3.85 40621 106915 

Mean 0.17 0.37 0.69 0.69 6.03 40161 154793 

 

For the KNN Effort model, four of the seven LOOCV error 

statistics reached a minimum at k=4: the 25th and 75th 

percentiles of the MRE, the mean MRE, and the MSE (mean 

squared error). The three error statistics that were not 

minimized fell to within 10% of their minimum values. The 

median MRE for k=4 was .31, indicating that half of test 

missions were estimated within 31% of their actual efforts, 

while half of test missions fell within 193 work months of 

their actual effort according to MdSE. 

 

Table 17 KNN SLOC k value LOOCV error rates 

k 

MRE SE 

25th 50th Mean 75th Max Median Mean 

1 0.14 0.35 0.60 0.60 4.47 1479 4020 

2 0.21 0.34 0.61 0.61 4.12 1159 3741 

3 0.21 0.31 0.63 0.63 5.32 1805 3788 

4 0.21 0.31 0.59 0.59 5.03 1560 3958 

5 0.15 0.32 0.59 0.59 5.51 1852 4132 

6 0.17 0.32 0.61 0.61 5.78 1774 4546 

7 0.14 0.33 0.63 0.63 5.48 1924 4823 

Mean 0.21 0.35 0.70 0.70 4.53 1375 6143 

 

For the KNN SLOC model, the evaluation criterion did not 

point as clearly to one particular value for k. Since the MRE 

values did not exhibit the same trend toward a minimum for 

SLOC as they did for the Effort model, we relied on the 

squared error values to choose k.  

 

Both the MdSE and the MSE reached a minimum at k=2. The 

MdSE for k=2 was 1159 (thousand SLOC), which was 22% 

lower than the next lowest k value. In addition, the maximum 

MRE, which ranged from 4.12 to 5.78, hit a minimum at k=2. 

This is an important additional metric to consider in model 

selection because minimizing the maximum error in the 

model helps prevent any one estimation produced by the 

model from being extremely far off the mark.  
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KNN Model Performance 
 

We assessed the prediction accuracy of the KNN models by 

comparing the KNN estimates to point estimates using only 

the mean effort and SLOC. To remain consistent with 

LOOCV and prevent each test mission from influencing its 

own cost estimation, the mean was calculated as the 

numerical average of all other points in the historical dataset. 

For example, to estimate the effort of Dawn, we removed 

Dawn and averaged the effort of all other missions in the 

historical dataset, then calculated the MRE of that estimate 

using the actual effort for Dawn. 

 

 
Figure 3 MRE distribution for KNN (k=4) versus MRE 

for predicting effort using the mean 

 

Prediction performance for the KNN Effort model is 

considerably better than prediction performance using the 

mean effort, as seen in Figure 3. For this model, 50% of MRE 

values lie below 0.31, while the mean had a MdMRE of 0.37. 

The interquartile range of the MRE also was lower and 

narrower for KNN than for the mean; the maximum MRE 

was 39% lower. Visually, the MRE curve lies almost entirely 

below the MRE of the mean, indicating that most test 

missions had more accurate cost estimates when predicted 

using the KNN method. 

 

 
Figure 4 MRE distribution for KNN (k=4) versus MRE 

for predicting SLOC using the mean 

 

For SLOC, the MRE curves lie almost on top of each other 

until the 50th percentile (Figure 4), indicating that the 

estimates had similar performances on the half of points that 

they predict “well”. For the Upper 50th percentile, the KNN 

model predicted better than the mean and had a lower 

maximum MRE (not pictured). 

 

Exploratory Analysis of Optional Inputs 
 

Motivation—Traditional KNN prediction models require 

values for all input fields in order to output an accurate 

estimate of the response variable. This was true of the prior 

version of ASCoT KNN. However, since ASCoT’s intended 

use is as an analogy-finder and cost-estimator during the pre-

formulation phase of a project, having the option of flexible 

inputs is a feature that is potentially beneficial to a user who 

may be missing some inputs. 

 

Since the previous version of ASCoT KNN had no method 

for dealing with missing inputs, it forced the user to guess the 

values of unknown parameters. Random guessing may 

impact which neighbors are utilized to build the cost 

estimates and thus which missions are returned to the user as 

analogous missions. This not only impacts the numerical 

output of the KNN models, but also the use of the tool as an 

analogy search engine. 

 

In the new version of KNN with optional inputs, excluded 

fields are not considered in the calculation of neighbors and 

thus do not rule out any missions unnecessarily from the 

analogy search. However, while optional inputs returns more 

accurate analogies, the models built on reduced dimensions 

will likely perform worse than the full model with all 

attributes.  

 

Evaluation of Number of Inputs—We ran a preliminary 

analysis on the KNN models to judge how much accuracy 

would be lost by using fewer inputs than the full set of seven 

possible parameters. Primarily using MRE, we compared 

using n=1, n=2, …, n=7 inputs to predict the effort level (for 

SLOC there are only six possible inputs so n=1 to n=6 were 

analyzed). For models with n < 7, LOOCV MREs were 

calculated for each mission as follows: 

 
1. Set n 

2. Select subset of n variables 

3. Remove one mission from the data 

4. Build KNN model on training missions using only subset 

of n variables and predict effort or SLOC for test mission 

5. Compute MRE for that test mission 

6. Repeat steps 3-5 for all missions 

7. Return to step 2 with new subset of n variables until all 

subsets have MRE values 

8. Average across all possible subsets, then return to step 1 

with a new n 

Thus, MRE values for each mission were calculated by 

computing all MREs for all subsets of n inputs, then 

averaging across all seven-choose-n models. 
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Computing the MRE values for each number of inputs 

resulted in an MRE distribution for n=1 to n=7 (n=6 for 

SLOC KNN Estimator). The same MRE and SE metrics as in 

the previous section were used to assess model performance. 

 

 
Figure 5 Upper 50th percentile of MRE distributions for 

n=1 to n=7 and mean 

 

In Figure 5, observe that the MRE distributions are top of 

each other for the first half of the distribution, but perform in 

order of number of inputs for the second half. This effect is 

more easily seen in Table 18 below.  

 

Table 18 KNN Effort errors by number of inputs 

n MRE MSE 
 

25th 50th Mean 75th Max Median Mean 

1 0.16 0.30 0.59 0.59 5.05 45118 122698 

2 0.20 0.31 0.60 0.60 4.76 61045 113427 

3 0.21 0.36 0.61 0.61 4.06 64611 114799 

4 0.20 0.38 0.59 0.59 3.93 56048 106790 

5 0.20 0.32 0.54 0.54 3.72 44652 94804 

6 0.14 0.32 0.48 0.48 3.67 27444 90549 

7 0.13 0.31 0.47 0.47 3.67 37351 88276 

Mean 0.17 0.37 0.69 0.69 6.03 40161 154793 

 

As expected, the full model with all 7 variables predicted 

effort the best, with the lowest MRE and SE statistics across 

the board in Table 18. The 6 variable models were not far 

behind, still performing slightly better than the mean, 

especially in the 50th to 100th percentile and in mean MRE 

and MSE. Using only three to five variable inputs was more 

indistinguishable from predicting using the mean, except in 

the max MRE and MSE categories, indicating that the mean’s 

prediction error distributions are highly skewed and the KNN 

error distributions are probably less so. Lastly, using only one 

or two inputs did not have much predictive power, but may 

still have value towards choosing analogous missions. 

 

For the SLOC estimator detailed in Table 19, the full model 

with all six variables (no Inheritance) was the only model 

which performed better than the mean. Using five variables 

has about the same predictive power as using the mean, 

displaying comparable values for MRE, a higher MdSE 

statistic and a lower MSE statistic. However, it is important 

to note that since MRE values were averaged across all 

possible subsets, these tables do not capture information 

regarding how accurately individual subsets were able to 

predict the effort levels of each mission. The below average 

prediction error rates for n < 6 may be due to one or two 

subsets of n variables that performed especially poorly. 

 

 

Table 19 KNN SLOC errors by number of inputs 

n 

MRE MSE 

25th 50th Mean 75th Max Median Mean 

1 0.22 0.30 0.66 0.66 5.18 1633 5711 

2 0.17 0.32 0.66 0.66 4.47 1755 5108 

3 0.21 0.35 0.68 0.68 4.47 2000 4483 

4 0.27 0.36 0.67 0.67 4.30 1722 4262 

5 0.23 0.36 0.62 0.62 4.20 1605 3603 

6 0.21 0.34 0.61 0.61 4.12 1159 3741 

Mean 0.21 0.35 0.70 0.70 4.53 1375 6143 

 

 

Evaluation of Attributes—Upon closer examination, different 

KNN models performed better than others depending on 

which variables were included. In order to compare 

performance between subsets, two MRE and squared error 

measures were computed separately for each subset using the 

same process as in the previous section (without averaging in 

Step 8). Then, each subset was given a point for each of the 

four error statistics that was lower than the mean statistic. 

Points were totaled across subsets and averaged across 

attributes to see which combinations of attributes performed 

the best.  

 

In our analysis, we considered the performance of each 

attribute and the performance of each attribute pair. For 

effort, there were 7 different attributes, amounting to 64 

subsets with each attribute individually and 32 subsets for 

each attribute pair. In our evaluation, assuming that the error 

statistics are equally weighted and independent, we would 

expect a score of 2 to indicate that a subset performed the 

same as the mean, a higher score to indicate superior 

performance and a lower score to inferior performance. 

However, it can be seen in Table 20 that all attributes score 

higher than 2. We attribute this to the correlation between 

error statistics. 
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Table 20 KNN Effort subset performance by attribute 

and attribute pair 

 Size 
No. 

Deploy Redun Type 
No. 
Instr Dest Inher 

Mission Size 2.66 2.97 2.84 3.00 2.38 2.75 2.91 

Deployables - 2.83 3.16 3.03 2.78 2.84 3.34 

Redundancy - - 2.78 3.03 2.41 2.72 3.03 

Mission Type - - - 2.92 2.72 2.75 2.88 

Instruments - - - - 2.16 2.13 2.44 

Destination - - - - - 2.45 2.66 

Inheritance - - - - - - 2.72 

 

For effort, the attribute which performed best on its own was 

Mission Type. Number of Instruments performed the worst 

on its own, marking error rates better than the mean on only 

2.16 out of 4 error statistics on average. As a pair, the top two 

performers both included Number of Deployables, paired 

with Inheritance and Redundancy, respectively. Overall, the 

results suggest that including Mission Type or Number of 

Deployables is favorable to producing accurate estimates, 

while Number of Instruments is probably an ok measure to 

exclude, if necessary. 

 

Table 21 KNN SLOC subset performance by attribute 

and attribute pair 

 Size 
No. 

Deploy Redun. Type 
No. 

Instr. Dest. 

Mission Size 1.53 1.31 1.50 1.88 1.56 2.50 

Deployables - 1.25 1.25 1.63 1.25 2.13 

Redundancy - - 1.44 1.75 1.19 2.00 

Mission Type - - - 2.00 1.63 2.44 

Instruments - - - - 1.25 1.75 

Destination - - - - - 2.09 

 

For the SLOC attributes, the results in Table 21 show that 

most attributes scored lower than 2, with the exception of 

Mission Type and Destination. Additionally, it is notable that 

while Number of Deployables was a good predictor of effort, 

it does not predict SLOC as well.  

 

A similar analysis could be conducted for each of the 

combinations of 3 attributes, and so on. However, these 

results must be taken with a grain of salt because some of the 

error in the estimate will always be due to irreducible random 

error. Note that the irreducible error may be also be affecting 

which subsets perform above and below the estimates 

produced by the mean. Since the chosen performance metric 

involves a discrete binary component, random error has a 

large effect on our analysis. 

 

Our intent in analyzing the performance of different subsets 

of inputs is not to say that users should only enter the inputs 

that performed well in the analysis. In reality, the user will 

 
3 In some cases of estimation through cluster analysis, the variance of the 

dependent variable is used as a minimization parameter, where clusters are 

not have much choice as to which variables are known or 

unknown. The purpose of our analysis is to inform users think 

critically about which inputs that they are entering in order to 

receive the best estimate possible and to give them an idea 

about which mission variables may be more important in 

deciding cost. 

 

C. Cluster Analysis 
 

Introduction—Cluster analysis, also called clustering, is an 

analytical approach for grouping a set of observations in such 

a way that members of the same group are more similar to 

each other than to observations in other groups  [14].  This 

makes it a natural approach for developing analogy 

estimation models.  There are a number of different statistical 

algorithms that can be used to perform clustering, four of 

which were used for cluster analysis in ASCoT as described 

below. 

 

In cluster analysis, groupings are determined based on 

inherent differences within the data that cause a natural 

separation. Due to this separation between groupings in the 

data, the expectation is that the parameter of interest (the 

dependent variable) is different for each group and has 

smaller variance within each group than across the sample a 

whole. Unlike parameter estimation in regression, the 

dependent variable is not considered when defining the 

groups or clusters  (performing cluster analysis) – this ensures 

unbiased groupings.3 

 

An effective use of cluster analysis requires a blend of system 

knowledge and quantitative metrics. Much like linear 

regression, there are quantitative metrics that help decide 

whether an input variable or model is valid, or better than 

another model. However, also like linear regression, it is 

possible to ‘over-fit’ a model to a set of data. In the same way 

that linear regression can utilize a different number of input 

variables or different levels within a categorical variable, 

cluster analysis can utilize a different number of input 

variables and a different number of clusters. By examining 

multiple clustering methods, along with increasing levels of 

detail within those methods, we arrive at a precise yet robust 

set of clusters.  

 

Because ASCoT cluster-based estimation works by assigning 

the user’s mission to a group (cluster) of previous missions 

based on user inputs, and using the attributes of that cluster 

(KNN within the assigned cluster, average software effort 

months or SLOC within that cluster) to yield an estimation – 

having the right clusters is essential. Using the right clusters 

ensures robust estimates – even if some aspects of the input 

mission are not fully defined, if the input mission is assigned 

to the correct cluster, ASCoT will provide an accurate 

starting point for an estimate.  

 

chosen to minimize this spread per cluster. 
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In the following sections, each of the four cluster methods 

used are discussed along with analysis of the level of detail 

and the convergence of results within and across each cluster 

method. Additionally, the “Granularity Space”, a framework 

for understanding the changing levels of detail across cluster 

methods is presented; and the balance between detailed, 

precise estimates versus robustness is discussed. 

 

Cluster Analysis Overview 
 

Cluster analysis is designed to identify different groups 

within a population, where differences between groups are 

maximized and differences within groups are minimized. 

Typically, cluster analysis methods rely on a Euclidean 

distance metric applied to normalized data to determine the 

distance between points and distances between points. This 

distance metric lives in the n-dimensional space of the data 

set, where n is the number of variables involved. In some 

cases, alternative distance metrics are used (e.g. Manhattan 

distance), or data sets are projected onto a principal 

component or kernel based space before clustering methods 

are applied. 

 

For some clustering methods, one necessary input into the 

algorithm is the number of clusters that should be used. 

Typically, system knowledge informs an estimate of the 

number of distinct clusters expected in the data, and then 

quantitative metrics refine or fine-tune this number. 

Generally, these quantitative methods compare the distance 

of each observation to a hypothesized cluster center, assign 

each observation to the closest cluster center, re-calculate the 

cluster centers, and repeat the process until all points are 

assigned to a cluster and the cluster centers converge. This 

type of method may include additional nuance, including the 

use of principal components, random sampling, and multiple 

iterations of initial cluster centers to yield stable results. 

 

Some cluster analysis methods do not require an expected 

number of clusters as an input– primarily hierarchical 

clustering and density based clustering. Hierarchical 

clustering breaks the entire data set down into a sorted tree, 

connecting each observation to its closest neighbor. In this 

methodology, major splits in the tree indicate different 

clusters. Density based clustering relies on a distance 

parameter P, where all points not within the specified 

distance P of each other create their own, new groups. In each 

of these cases, random starting points or iterations are not 

needed. 

 

While there are many types of clustering that work well for 

different types and “shapes” of data, all of the methods rely 

on quantitative metrics to evaluate their performance and are 

subject to the level-of-detail versus robustness trade off, just 

like linear regression. The pros, cons, and applicability of 

each of the methods used are presented and discussed below. 

 

 

 

 

Cluster Methods Used 
 

In order to get full perspective of how historical missions 

group together, multiple clustering methods were compared 

across different levels of granularity, and the results were 

merged to form the final model used in ASCoT. 

 

K-means Clustering (Centroid based iterative clustering)—

k-means clustering is one of the most widely used clustering 

methods; it is performed on normalized data, requires a user 

input number of clusters n, and requires iterations in order to 

arrive at a solution. K-means clustering works by choosing n 

random starting cluster centers, calculating the distance 

between each data point and each cluster center, then 

assigning each data point to the cluster center to which it is 

closest. Next, each cluster center is updated by averaging the 

components of every data point in that cluster, and the points 

are re-assigned to the (new) cluster to which it is closest. This 

process is repeated until the cluster centers stop changing and 

the members of each cluster are stationary. The number n of 

assumed cluster centers is a user input number. [14] 

 

Once the cluster centers are stable for a given iteration of k-

means clustering, the “sum-of-within-cluster-variance”, a 

metric for the ‘spread’ or tightness of the clusters, is 

calculated. K-means clustering is then iterated many times, 

each time with different random initial cluster centers and the 

trial with the best sum-of-within-cluster-variance is selected 

as the final model.  

 

The sum-of-within-cluster-variance is the sum of the 

distances from each data point to the center of the cluster to 

which it is assigned. This sum is recorded for each cluster, 

and summed over all of the clusters. Unlike an F-statistic for 

linear regression, there is no threshold which indicates an 

adequate sum-of-within-cluster-variance. However, the 

metric is still suitable for comparing models with different 

numbers of clusters and determining the best set of a clusters 

for a given n. Due to the existence of local minima and sum-

of-within-cluster-variance, it is necessary to iterate different 

initial cluster centers until the clusters yielding the best 

(lowest) sum-of-within-cluster-variance are found. 

 

Choosing between numbers of clusters requires a balance of 

system knowledge, combined with analysis of the sum-of-

within-cluster-variance. In theory, if every single point is 

assigned to its own cluster, the sum-of-within-cluster-

variance would be zero; likewise, if the number of clusters is 

one, then the sum-of-within-cluster-variance would be the 

sum of differences from each point to the overall average of 

the data, per dimension. Neither of these results is desirable. 

The goal is to find a point where an increase in granularity, 

the detail which provides increased information (tighter 

groupings), is maximized but not over-defining the system by 

over-fitting the data. Usually, this is indicated by the point at 

which the step from n-1 to n clusters yields a significant 

decrease in sum-of-within-cluster-variance, but a further step 

to n+1 yields a very small decrease (Figure 6). This indicates 

a natural split of the data. 
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PCA Clustering—PCA Clustering works by first reducing 

the dimensionality of the data to the k principle components 

(k is based on choosing the principle components that account 

for the greatest spread in variance across the data), then 

performing k-means clustering on the data projected onto the 

k principle components [14]. 

 

Figure 6 When choosing the number of clusters k, major 

kinks in the graph indicate significant decreases in sum-

of-within-cluster-variance; here, it is highly likely that 

the optimal number of clusters is 6, but 3 should also be 

considered 

By projecting the data onto k principle components, data that 

may be non-convex becomes more convex, which facilitates 

clustering. Additionally, by finding important sources of 

variance in the data, PCA Clustering automatically highlights 

the key dimensions of the data, serving to bring-forward the 

most differentiating factors. 

 

Choosing the k used in PCA clustering adds yet another layer 

to model selection which affects the detail and precision vs. 

robustness tradeoff. The larger the value of k, the more 

dimensions of the data set are used in clustering, so this can 

increase precision – but using fewer principle components, 

key dimensions of the data, means that only the dimensions 

with the largest effects are used, which reduces noise and the 

potential for over-fitting. 

 

Level of detail: number of principle components, number of 

clusters, iteration, result consistency, leave-one-out, 

variables and factor levels 

 

Spectral Clustering—Spectral clustering is another method 

used in the present analysis which often builds off of centroid 

based clustering. In spectral clustering, a distance or 

 
4 Note that density clustering adds another level of detail to be tuned in the 

granularity space. However, density based clustering is typically better for 
image and or character recognition – it is not ideal for globular data where 

the globules have different or unknown spreads or distances between points. 

similarity matrix is created, after which the graph Laplacian 

matrix of the similarity matrix is determined; with these 

steps, either centroid or density clustering may be 

performed4. Once we have the graph Laplacian, the major 

eigenvectors are taken, and the expected number of clusters 

is based on the number of major eigenvectors. Spectral 

clustering can work with non-convex data, but its specialty is 

more in the image and graph-edge-node based world. 

  

Level of detail: m eigenvectors, type of difference matrix 

chosen (also present in other cluster methods, but more 

options are sometimes used here), leave-one-out, variables 

and levels 

 

Hierarchical Clustering—Hierarchal clustering is 

performed in this analysis as another lens through which to 

look at our data, to find the optimal mission groupings, and 

to merge the results of other more nuanced cluster methods. 

 

Hierarchical clustering has three main methods: (1) 

minimization of difference between closest points within a 

group, (2) minimization of distance between farthest apart 

members of each group, and 3) a mixture of (1) and (2), 

minimum distance to the center of a group. The intuitive 

methodology of hierarchical clustering is to repeatedly iterate 

over the entire data set, find the two points which are closest 

together, group those two points together or merge a point 

into the group of the point it’s closest to, until all of the data 

has been grouped into a single tree-like structure [14]. In 

method (1), the linkages are determined as such: when a data 

point is closest to a data point that is already in a group, that 

new data point then joins that group, as in another branch of 

that group. In method (2) when comparing the distance of 

data points to points already in a group, a data point is 

compared the member which is farthest away in each group, 

and then it is connected to the group to which is has the 

smallest maximum distance. The third method compares a 

data point to the center of each current group of points, and 

assigns it to the group to which it is closest to the average. 

 

 

Variables, Factors and Levels—When quantizing the levels 

of a categorical variable, the numeric values must be chosen 

carefully. If the different levels are not ordered (a 

categorical or nominal variable), then the information can be 

encoded in binary variables. However, if the information is 

ordinal, it must be encoded in numerical order. [2]  

 

While using numeric variables exactly as they appear in the 

dataset, i.e. number of instruments, was a standard decision, 

decisions also needed to be made for the other, more 

qualitative, variables. For example, what is the best way to 

encode mission destination numerically? How can we best 

quantify orbiter missions versus rover missions?  

 

As this is the case for the present data, density clustering is not used in this 

analysis. 
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Specifically, setting mission size as 1, 2, 3 and 4 makes sense 

– this is a typical encoding of size related categorical 

variables. Mission type is a bit less straight forward – how 

‘similar’ are orbiters to landers? And orbiters to rovers? And 

landers to rovers? It is clear that landers and rovers are 

different than orbiters, and it makes sense that landers are 

closer to rovers than orbiters are to rovers – rovers include a 

lander and beyond that, have additional flight hardware.  

Table 22 Choosing the best number of levels for 

categorical variables, as well as the right encoding 

values, is necessary to include the right information, 

while not over-segmenting the data 

 

Since these assigned encoded variables will be used to 

differentiate and analogize between missions, we need the 

data to be representative of the qualitative variables that they 

represent. Therefore, the goal is to encode the qualitative 

information in an accurate, consistent, logical, and 

adequately representational manner. 

 

Multiple cluster analysis iterations were performed, 

including or excluding different levels of categorical variable 

breakdown, and the results were generally consistent with the 

final results presented. The final variables (Table 22) chosen 

for use in cluster analysis, and the levels of categorical 

variables, were chosen for robustness, consistency in results, 

and alignment with system and engineering knowledge. 

 

Level of detail: number of variables, levels of categorical 

variables including number of levels and quantity of 

encoding 

  

 

 

 

 

 

 

Granularity Space: Choosing the right level of detail 
 

So, there are many lenses through which to examine how 

missions group together, and each of these lenses has its own 

set of knobs – Now, how do we find the right combination of 

cluster analysis input parameters? How do we obtain the 

optimal amount of precision and detail while maintaining a 

robust set of clusters that does not over-fit the data?  

 

Optimal results: 

• Detailed groupings of missions that are similar to 

each other but different from other groupings 

• Consistent across iterations 

• Consistent between cluster methods 

• Consistent to data variation (through LOOCV) 

• Align with systems and engineering knowledge (if 

a Mars rover is grouped with a small Earth orbiter, 

something is off!) 

In order to accomplish this, we need to  

1. Do a parameter sweep from less detailed to more 

detailed, across the tunable input parameters 

2. Iterate clustering to ensure we attain globally 

optimal clusters rather than getting stuck at local 

minima 

3. Compare results across cluster methods to look for 

consistency and alignment at similar levels of 

detail 

4. Map the results of which missions cluster together 

and where on the granularity space they align with 

each other, as well as systems and engineering 

knowledge 

A facet of analysis that is tougher to quantize, relative to 

number of groups, number of principle components or 

number of eigenvectors, is the rate of convergence in cluster 

groupings. We can measure this rate by the number of 

samples required in order to ‘find’ a globally optimal result. 

In theory, while a large number of samples does not diminish 

the fact that the global minima was eventually found, it does 

provide commentary and context on the robustness of the 

clusters, and complexity and variance within the shape of the 

data. 

 

Examining the convergence of cluster analysis methods at 

different levels of granularity ensures that we examine the 

optimal results of clustering per method, at each level within 

the granularity space in order to find the most robust yet 

precise cluster results (Figure 7). 

 

Variable Levels Encoding 

Number of 
Instruments 

Numeric, used as-is (6 instruments 
stays as 6, etc) 

Number of 
Deployables 

Numeric, used as-is (2 deployables 
stays as 2, etc) 

Mission size Small, Medium, Large, 
Flagship 

1, 2, 3, 4 

Mission Type Orbiter, Observatory, 
Lander, Rover 

1, 1, 2, 4 

Destination Earth, Inner Planetary, 
Asteroid/Comet, Outer 
Planetary 

1, 2, 3, 4 

Heritage Very Low to None, 
Low, Medium, High, 
Very High 

1, 2, 3, 4, 5  

Redundancy Single String, Dual 
String Cold, Dual String 
Warm 

1, 2, 4 



 

 14 

 
 

Figure 7 Looking at the results (Group Membership, 

Size of Clusters, Overlap between Clusters, and other 

parameters) across the Granularity Space, we can see 

where cluster methods and results align most, and at 

which level of detail; we’re looking for consistency 

 

The way we will view this is by examining which groups of 

missions ‘break-off’ from the rest of the missions, in what 

order. The order in which missions break off from the group 

of total missions to some extent indicates the degree to which 

they are ‘different’. The order in which the mission types 

break off is discussed in more detail subsequently. 

 

In order to tally the convergence of cluster groupings, and to 

determine how quickly distinct cluster groupings arose, 

additional analysis steps were implemented. Specifically, 

many iterations of clustering (across the whole granularity 

space) were performed, and a count of how often each 

mission was clustered with each other mission and with 

specific groups of missions was tracked. This was 

accomplished according to the following steps –  
 

1. Choose a set of parameters (n clusters, on k principle 

components) 

2. Perform clustering on the data 

3. Record which missions appear in the same clusters using 

an assignment-comparison matrix (mission-pairing-

comparison matrix) 

4. Repeat for hundreds or thousands of iterations 

5. Add the mission-pairing-comparison matrix to the prior 

mission-paring-matrix each time, yielding a tally of how 

often each mission was paired with each other mission 

 
5
 An interesting question emerged during our analysis: how does the most 

common local minima compare to the global minima? This would an 
interesting topic for a separate research endeavor. In this case, it was used to 

provide context and make inference about the shape of the data the more 

6. Perform hierarchical clustering on the assignment-

comparison matrix in order to analyze and determine the 

groups of missions that were paired together most often 

Furthermore, various iteration levels were employed within 

each cluster method— thousands of trials of k-means, PCA 

clustering and spectral clustering were performed with one 

iteration per trial, 25 iterations per trial, and 50 iterations per 

trial. This allows us to compare the consistency of local 

minima, how often the most common local minima occur 

compared to the global minimum5 with different number of 

trial starts, and how long it may take the sum of local minima 

to converge to the global minima (if it does). 

 

 

Cluster Analysis Results 

  

To summarize, multiple cluster analysis methods were used, 

swept across the granularity space from less detailed to more 

detailed, the overall results from all of the methods were 

compared, and the most consistent clustering results were 

taken as the ultimate results. Inputs to the Ascot model assign 

a user’s mission to a cluster from which a software cost or 

labor estimate is made based on KNN within the assigned 

cluster, and the average of that cluster is also shown. As our 

primary goal is correct and robust estimates that align with 

engineering knowledge, it is important that we create 

coherent, robust clusters, so that input missions get classified 

with the right analogous missions to create trustworthy 

estimates. 

 

k-means clustering results—Because k-means clustering is 

less nuanced and more simple than PCA clustering, it is a 

good place to start to explore the data and the clusters that 

may be present. K-means clustering performed surprisingly 

well at a high level, breaking missions into relatively 

consistent groupings across iterations, and aligning decently 

with systems knowledge. It generally did well separating 

Rovers and Landers from other missions. 

 

At the detailed, high granularity level, it also performed 

decently. Allowing up to 8 clusters, k-means created clusters 

that generally separated Earth missions, and rovers/landers, 

but had some strange mixes of large planetary orbiters and 

planetary and asteroid/comet missions. While some of this 

mixing makes sense, pushing towards 8 clusters with a data 

set that isn’t large causes overfitting to become a cause for 

concern. 

 

In the ranges between 3 and 8 clusters, k-means was a bit less 

consistent; it is this area, where we want to see which is a 

bigger differentiator – small versus large orbiter, planetary 

versus Earth mission, low versus high heritage, or 

Asteroid/Comet versus planetary – that we need more 

information. 

consistent the local minima groupings, and the closer they are to the global 

minima, the more globular the data and the more robust the cluster 
groupings, if they align. 
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PCA clustering results—Like with k-means clustering, PCA 

clustering was robust at the highest levels of separation. 

However, by tuning our level of detail, and finding the right 

place in the granularity space, PCA clustering was able to 

better sort some of the missions at the middle to high levels 

of detail. Specifically, PCA clustering with 6 principle 

components was able to provide our final definition of the set 

of Earth and small-to-mid size planetary orbiters. 

 

Figure 9 shows the reduction in variance versus the number 

of principle components. At first glance, three looks like an 

appropriate number of principle components to use given the 

reduction in variance and the subsequent leveling-off. Six 

principle components looks like another viable option but 

since there are only seven original components, this removes 

principle components’ attractive feature of dimensionality 

reduction.  

 

 

As it turns out, using three principle components is stable and 

does well if we maintain a lower number of clusters (Large 

Outer Planetary, Rovers, Landers, and Earth & Planetary 

Non-Landers), but if we increase our level of detail enough 

to zoom in and separate out that Earth & Planetary Non-

Landers group, increasing the number of principle 

components is beneficial. In some cases, at a lower detail 

level of the granularity space, with fewer principle 

components and clusters, the Rover missions group with the 

Large Outer Planetary missions. This is interesting, and 

makes sense given some of the characteristics of these 

missions: they are all large to flagship missions, have low 

heritage, many instruments, and mid to high levels of 

deployables. When increasing the level of granularity, they 

consistently separate – which also makes sense, and allows 

for better estimation for input missions. 

 

Ultimately, seven Clusters based on six principle components 

were found: Smaller Earth Missions; Larger Earth with 

Planetary Missions; Smaller, Lower Heritage Planetary & 

Ast/Com Missions; Larger, Higher Heritage Planetary & 

Ast/Com Missions, Large Outer Planetary Missions; Rover 

Missions; and Lander Missions. 

 

Spectral clustering results—Spectral clustering often does 

very well with image recognition and character recognition – 

and is a bit closer to a density based cluster analysis approach 

while still functioning on globular, non-image data. It may 

not be ideal, in this case, but it does provide a breakdown at 

a high level, and it is still helpful as part a lens when 

analyzing the problem. 

 

Spectral clustering, like the other methods at the top level of 

granularity, did a good job of separating rover missions and 

flagship outer planetary missions. It is good to see this 

general consistency across different lenses for examining the 

separation of missions into groupings. However, within the 

small-to-mid-size mission groupings, spectral clustering did 

not do so well – it did not consistently group missions in this 

category into similar groups across iterations, and it didn’t 

align well with systems and engineering knowledge. 

 
Figure 8 n=7 Clusters on k=3 Principle Components – the many non-red squares in the assignment-comparison 

matrix on the left, we can see that over many iterations, missions are not consistently grouped together; in the center 

plot, we can see less differentiation between groups in the hierarchical cluster analysis of the assignment-comparison 

matrix, based on the small height of some of the branches; the plot on the right shows mission groupings and group 

overlap, plotted with the first two principle components 

 

 
Figure 9 Remaining variance as a function of the 

number of principal components 
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Hierarchical clustering results—With Hierarchical 

clustering, we saw high-level breakouts between rover, 

planetary and earth based missions. This is not surprising 

given that the few Large Outer Planetary missions in the 

database are so different, and that there are very few Outer 

Planetary and Rovers missions. The different hierarchical 

clustering methods showed similar results. It’s interesting to 

note – in some cases, the Rover missions were grouped with 

the Large Outer Planetary missions (as with some other 

methods) – this makes sense when we examine the 

characteristics of these missions, and see that they are all 

large to flagship size, and all have low heritage, many 

instruments, and mid to high levels of deployables. So, it’s 

nice to see the quantitative clustering methods making sense, 

but we’d like to increase the granularity of analysis to align 

further with systems level knowledge – where Rovers form 

their own group. 

 

Within the Earth and Planetary non-Lander missions 

(orbiters, observatories, flybys, anything that does not land 

softly on a planet), there was a good deal of confusion. This 

is not surprising, as this is a tough part of the data to 

differentiate, and hierarchical clustering is not the most 

nuanced option. Including or excluding some variables, or 

removing potential ‘outlier’ missions, yielded very similar 

high level results. 

 

  

 
Figure 10 n=7 Clusters on k=6 Principle Components – the significant amount of dark red in the assignment-

comparison matrix on the left shows that over many iterations, missions are almost always grouped together; in the 

center plot, we can see a great deal of differentiation between groups in the hierarchical cluster analysis of the 

assignment-comparison matrix, based on the large heights of the branches; the plot on the right shows mission 

groupings and group overlap, plotted with the first two principle components 

 
Figure 11 By examining which groups of missions split off in which order, we can get a sense for how ‘different’ those 

missions are from each other; note that the order in which mission groups split off is slightly different when 

comparing different clustering methods – but seeing similar final groups at the high-detail level of the Granularity 

Space increases our faith in the resulting clusters 
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Consistency Within Clusters/ Difference Between Clusters 
 

When examining the convergence of results across the 

various methods considered, we see good alignment at the 

high level – either rover or flagship outer planetary missions 

typically break away from the data first into their own groups 

(Figure 10 and Figure 11), then Earth and Planetary missions 

separate. In some lower granularity tests, (fewer versus more 

clusters, principle components, variables and levels of 

categorical variables), flagship orbiters may group with rover 

missions. This makes sense, as the scale of rover missions 

and flagship outer planetary orbiters is often similar, and to 

this end, a complex examination of the characteristics per 

cluster shows that they do have overlap in size, low heritage, 

and high numbers of instruments and deployables. 

 

We saw this result in multiple cluster methods at the lower 

end of the granularity space, but when using a more fine-

toothed comb, we saw rover and flagship missions separate 

into different groups. This makes sense at a systems and 

engineering level, and while increasing the functionality of 

the resulting clusters in the context of a cluster based 

estimation tool, it decreases the variance in software cost and 

effort within those clusters. 

 

One inconsistency that was observed across cluster methods 

was the time at which lander missions break off into their own 

cluster. While with a fine-tooth comb, we’d certainly expect 

landers to break away from orbiters, it makes sense that the 

breakoff could happen late in the process because a small 

lander mission may have complexity or cost that is similar to 

a complex planetary orbiter mission, especially when varying 

levels of heritage come into play. Even if different cluster 

methods separate them into their own group earlier or later as 

we sweep across the granularity space, the fact that we see 

them consistently form their own group, combined with 

system level knowledge, makes the results of our clustering 

analysis more credible. 

 

The missions that were most hesitant to separate were the 

Earth and small to mid-size planetary and asteroid/comet 

non-Lander missions (including orbiters, observatories, and 

flybys/carriers – anything that doesn’t land softly on a 

celestial body). This is not surprising since system and 

engineering knowledge shows that there is overlap between 

complex Earth orbiters, and especially observatories, and 

lower complexity planetary, and especially inner planetary, 

orbiter missions.  

 

There was less consistency within the order in which 

different clustering methods separated out the Earth, 

Planetary, and Asteroid/Comet missions. Some cluster 

methods broke out Landers first, whereas others created 

multiple Planetary mission groups before separating the 

Earth missions, for example. This is not surprising, given 

system and engineering level knowledge. That different 

methods separated these missions into groups in different 

orders simply shows us that there is more variance in this part 

of our data space. Still, finding relatively consistent 

groupings at the higher end of the granularity space as well 

the more detailed level of our granularity space (more 

variance in the middle), makes us feel better about our results.  

 
Overall, as we sweep across the parameter space, we see a 

convergence of results at the early stages: rovers and flagship 

outer planetary missions generally breaking into their own 

groups. We also see solid convergence at the higher end of 

the granularity space: a lander mission group, an Earth 

mission group, a smaller planetary and Earth mission group, 

and a final larger planetary and asteroid/comet group. Given 

the alignment of different cluster methods, the high level of 

iteration, sampling and convergence throughout the analysis 

process, and the alignment with system and engineering 

knowledge, we have more faith in the validity of the resulting 

clusters. Specific characteristics of each group are presented 

in the subsequent section. 

 

It should be noted: in addition to finding clusters that are 

optimally separated mathematically, and are robust and 

repeatably separable, keeping the final use in mind (as an 

estimation tool) is part of finding the right clustering 

methodology.  

 

For example, if a user inputs a large orbiter mission and sees 

their mission in a rover mission group, with a rover mission 

level software cost (whether or not this is true), a user may 

not trust the results, even though some flagship orbiter 

missions have a similar software cost to various rover 

missions. So, in the case of mathematically indistinguishable 

groupings, considering user experience and tool functionality 

in combination with system and engineering knowledge 

would be the most logical tiebreaker. 

 

Additional testing for the quality of cluster separation of 

clusters was performed, with an emphasis on final 

applicability to software cost and effort prediction. As 

discussed elsewhere, prediction is made using the k-nearest-

neighbor method in order to maximize estimation precision. 

The MRE of multiple clustering results was tested and is 

shown in Figure 12, where the minimum integral of the total 

 
Figure 12 MRE Plots show that estimates from PCA 

Clustering perform well, and distinctly best, for the 

more extreme estimates 
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MRE curve is generally the optimal prediction result. PCA 

clustering generally performed best, especially with regards 

to less common missions (that create huge errors for some 

methods), where it offered a major reduction in total error. 

 

Mission Characteristics by Cluster 

 

By examining the missions per cluster, and the distributions 

and relationships of the variables per cluster, we can see the 

major separating factors and observe the similarities within 

groups. Each cluster’s missions and their respective attributes 

are broken out in Figure 13 to Figure 19.  

 

For Earth Missions, Number of Deployables, Mission Size, 

and Number of Instruments are the primary differentiators; 

for Planetary & Asteroid/Comet Missions: Heritage, Number 

of Instruments, and a summation of Mission Size with 

Destination differentiate the two primary non-Earth groups; 

Large Outer Planetary missions group together very well; 

Landers group together very well, and Rovers group together 

very well. The key differences between Earth and Planetary 

groups appear in the Heritage to Mission Size relationships, 

as well as the Number of Deployables; Landers and Rovers 

differentiate very clearly, based on the Number of 

Instruments and the Deployables, as well as Heritage.  

 

 
Figure 13 Smaller Earth Missions 

 

 
Figure 14 Larger Earth & Some Planetary Missions 

 

 
Figure 15 Large Outer Planetary Missions 

 

 
Figure 16 Lander Missions 

 

 
Figure 17 Larger, Higher Heritage Planetary & 

Asteroid/Comet Missions 

 

 
Figure 18 Smaller, Lower Heritage Planetary & 

Asteroid/Comet Missions 

 

 
Figure 19 Rover Missions 

 

Observing these similarities between groups increases our 

system and engineering level faith in the results, and may 

allow for additional engineering and mission cost and mass 

estimation profiles per group, to be examined outside of the 

present analysis. 
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5.  CONCLUSIONS AND NEXT STEPS 

The primary objectives of ASCoT are to 1) provide improved 

methods for estimating software cost and size in the early 

project life-cycle, 2) formalize analogy-based estimation 

taking advantage of machine learning methods, and 3) set a 

standard for the release of NASA wide estimation tools as on-

line, web-based tools.   

 

All of these objectives have been met.  The fulfillment of the 

first two objectives are extensively documented in this paper.   

In meeting the third objective, a new task COMPACT 

(CubeSat Or Microsat Probabilistic + Analogies Cost Tool) 

has been started which will use the ASCoT framework. 

 

ASCoT R1, NASA’s first online web model was deployed to 

entire NASA audience with access to NASA ONCE in 

August 2018.  The primary next step is the development of 

training material and delivering training across the various 

NASA centers. The training process will allow the team to 

collect feedback and test the process for pushing model 

updates remotely for updated observations or recalculated 

clusters.   

 

Finally, the delivery of ASCoT R2, which will incorporate 

new mission data as it becomes available and updates as 

requested by our users, is planned for August 2019.  
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APPENDIX A: ACRONYMS AND ABBREVIATIONS 
A list of acronyms and abbreviations used in this paper, in alphabetical order, for reference.  

 

Acronym Definition 

ASCoT Analogy Software Costing Tool Suite 

CADRe Cost Analysis Data Requirement 

CER Cost Estimating Relationship 

CML Concept Maturity Level 

COCOMO Constructive Cost Model 

JPL Jet Propulsion Laboratory 

KNN K-Nearest Neighbors 

LOOCV Leave-One-Out Cross Validation 

MdMRE Median Magnitude of Relative Error 

MdSE Median Squared Error 

MMRE Mean Magnitude of Relative Error 

MRE Magnitude of Relative Error 

MSE Mean Squared Error 

NASA National Aeronautics and Space Administration 

ONCE One NASA Cost Engineering 

PCA Principle Components Analysis 

SLOC Source Lines of Code 

WBS Work Breakdown Structure 
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APPENDIX B: SYSTEM PARAMETERS WITH DEFINITIONS AND EXAMPLES 
Detailed tables describing model inputs, complete with possible values, definitions, and examples for each of 

the seven inputs used in the KNN and clustering models. 
 

 

Mission Type Values Description Example 

  
Orbiter A Robotic spacecraft that orbits or its target body.  

Also includes flyby spacecraft. 
Aqua, New Horizons 

  

Observatory 

Observatories are space based telescopes that support 

space based astronomy across a wide set of 

frequencies.  They can be earth trailing or at the 

various LaGrange points created by the gravity fields 

of the earth, sun and moon. 

Kepler 

  

Lander 
A robotic spacecraft that does its science in-situ or 

from the surface of a solar system body.  It does not 

move from its original location.  

Phoenix 

  

Rover 

A robotic spacecraft that does its science in-situ or 

from the surface of a solar system body and has the 

ability to move on the surface.  To date all rovers have 

wheels but in the future they may crawl, walk or hop.   

MSL  

Destination Values Description Example 

  Earth Missions that are in an Earth orbit.   OCO 

  

Inner Planetary 

Missions that target planets within the asteroid belt. 

Also includes missions that are Heliocentric, Earth 

leading or trailing, at the Earth-Sun-Moon LaGrange 

points, and lunar mission. 

Maven 

  

Asteroid/Comet 
Missions that target asteroids or comets. As these may 

typically require more complex, or different, 

trajectories than inner planetary missions.  

Dawn 

  
Outer Planetary Outer Planetary missions are missions that travel 

beyond the asteroid belt. 
JUNO 

Number of 

Instruments 
Values 

Description 
Example 

  

Number of 

Instruments 
Total number of unique instruments on spacecraft.   

Data ranges from 1 to 11 

instruments.  Median is 4 

instruments. 

Number of 

Deployables 
Values 

Description 
Example 

  

Number of 

Deployables 

Total number of unique deployables controlled by 

spacecraft.   

Number of deployable 

Solar arrays,  booms, 

robotic arms, etc.  Data 

ranges from 0 to 10 

deployments.  Median is 3 

deployables.  
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Flight 

Computer 

Redundancy 

Values 

Description 

Example 

  Single String Spacecraft has no redundancy in the flight computer Most Earth Orbiters 

  

Dual String - 

Cold backup 

Spacecraft has redundant flight computers. Backup is 

normally off, is powered up and boots when prime 

string goes down 

Most Deep space missions 

  

Dual String - 

Warm backup 

Backup computer is powered on and monitoring state 

of prime computer, but does not need to maintain 

continuous operation (e.g., a sequence may be 

restarted, attitude control restarts with last known state, 

etc.) 

MSL  

Inheritance Values Description Example 

  
Low to None 

Total Inherited code, including modified code is < 10% 

of delivered code. 
MER, TIMED,  LRO 

  
Low 

Total Inherited code, including modified code is 

between 10% to 20% of delivered code. 

Deep Impact, New 

Horizons 

  
Medium 

Total Inherited code, including modified code is   >= 

20% and < 50% of delivered code. 
Messenger, MRO 

  
High 

Total Inherited code, including modified code is   >= 

50% and < 80% of delivered code. 
JUNO, SDO, GPM core 

  
Very High 

Total Inherited code, including modified code is a 

minimum of 80% of delivered code. 

MAVEN, Grail, NOAA-N-

Prime 

Total Mission 

Size 
Values 

Description 
Example 

  
Small 

Total Mission cost including operations in FY15 

dollars is > $120M and < $220 million 
Wise,  small earth orbiters  

  
Medium 

Total Mission cost including operations in FY15 

dollars is > $220 million and < $600 million 
Discovery class missions 

  
Large 

Total Mission cost including operations in FY15 

dollars is > $600 million and < $1.1 billion 

New Frontiers class 

missions 

  
Very Large 

Total Mission cost including operations in FY15 

dollars is > $1.1 billion 

Large assigned mission, 

MSL 

Software 

Delivered 

Code 

Values Description Example 

  Small Delivered logical lines of code is < 50 KSLOC Small earth orbiters 

  
Medium 

Delivered logical lines of code is > 50 KSLOC and < 

120  KSLOC 
LRO, Kepler 

  
Large 

Delivered logical lines of code is > 120 KSLOC and < 

220  KSLOC 
LCROSS, SMAP, Phoenix 

  
Very Large 

Delivered logical lines of code is  > 220 KSLOC and < 

300 
OSIRIS-Rex, MER 

  Extra Large Delivered logical lines of code is  > 300  KSLOC  MSL 
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APPENDIX C: MISSION DATA INCLUSION LIST 
List of all missions included in ASCoT alphabetically and by which tool(s) they are included in. 

 

Mission Name Effort KNN SLOC KNN Clustering CER 

Aqua        

Cassini       

Contour    

Dawn    

Deep Impact    

Deep Space 1 (DS1)    

Earth Observing 1 (EO1)      

Fast Auroral Snapshot Explorer (FAST)      

Galileo (GLL)      

Gamma Ray Observatory (GRO)      

Genesis    

GEOTAIL        

GLAST        

GLORY    

GOES-R      

GPM Core    

Grail    

Gravity and Extreme Magnetism Small Explorer (GEMS)    

Hubble Space Telescope (HST)       

IBEX     

Insight    

IRIS        

JUNO    

Kepler      

LADEE    

Landsat Data Continuity Mission (LDCM)        

LCROSS        

Lunar Reconnaissance Orbiter (LRO)    

Magnetosqpheric Multiscale Mission (MMS)    

MAP    

Mars Exploration Rover (MER)    

Mars Odyssey    

Mars Pathfinder (MPF)    

Mars Reconnaissance Orbiter (MRO)    

Mars Science Laboratory (MSL)    

Maven    

Messenger    

Near     

New Horizons    

NOAA-N-Prime        

NuStar    

Orbiting Carbon Observatory (OCO)    

Orbiting Carbon Observatory 2 (OCO 2)    

OSIRIS REX     
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Phoenix    

RHESSI        

SAMPEX      

SMAP      

Solar Dynamics Observatory (SDO)    

Solar Probe Plus    

Stardust      

Stereo    

Suomi National Polar-Orbiting Partnership (NPP)        

SWAS       

Timed    

TRACE    

TRMM    

Van Allen Probe    

WIRE    

WISE    

 


